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The shapes and sizes of two-dimensional pressurized, 
self-intersecting rings, as models for two-dimensional vesicles 
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t Physics Department, University of California, Santa Cruz, Santa Cruz. CA 95064, USA 
I Department of Physics, UCLA. Los Angeles, CA 90024-1547, USA 

Received 26 March 1992 

Abstract. Two-dimensional vesicles are modelled as pressurized, unrestricted closed ran- 
dom walks. The model, though suffering from undesirable physical characteristics, has the 
decided advantage of yielding exact analytical statistical analysis of the size and shapes 
of these objects. Closed-form expressions for the average of the square of the radius of 
gyration and the asphericily are derived. I n  addition, exact expressions for the full probabil- 
ity distribution are also obtained. Numerical computations of the probability function for 
several pressures are presented. We arrive at a new, exact formula for the distribution 
function, P(R:, R;), of the principal components of the square of the radius of gyration 
for two-dimensional rings. 

1. Introduction 

Membranes consisting of closed bilayer sheets of lipid molecules are known as vesicles. 
Their shapes were first successfully interpreted in the pioneering work of Canham 
(19701, Helfrich (1973) and Deuling and Helfrich (1976). In these studies, it was 
recognized that vesicles in equilibrium, such as red blood cells, assume a shape that 
minimizes distortional energy. It was argued that the dominant distortional force is 
due to bending. Other forces related to stretching or tilting play a secondary role in 
influencing the shapes of the membranous surface of these vesicles. The most probable 
shape of a vesicle is, then, determined by minimizing an appropriate curvature energy. 
This procedure leads to vesicle surfaces determined by an Euler-Lagrange equation. 
The situation is slightly more involved if the vesicles find themselves in a fluid at finite 
temperature where an osmotic pressure differential is maintained. Now the shape of 
the cell will fluctuate. In thermodynamic equilibrium, the probability distribution of 
the membrane’s shape will be described by the laws of statistical mechanics. A 
calculation based on this approach was first carried out by Ostrowsky and Peyrand 
(1982). 

More recently, Leibler, Fisher and co-workers (1987, 1989, 1990 and 1991) have 
engaged in a comprehensive numerical investigation of the two-dimensional vesicle, 
which is modelled as a closed, self-avoiding two-dimensional random walk acted on 
both by bending forces and by a force due to an effective osmotic pressure difference 
Ap=pinr-peXr between the fluid inside the closed walk and that of the external 
environment. The two regimes, an ‘inflated’ regime corresponding to Ap > 0, and a 
‘deflated‘ regime, which corresponds to Ap <0, were both studied by these authors. 
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In addition to Monte Carlo calculations of wall conformation as a function of pressure, 
Leibler et a1 were able to identify important scaling properties of various shape 
parameters. 

It was noticed by Rudnick and Gaspari (1991) that the relaxation of the requirement 
of self-avoidance in the random walk model of Leibler et al transforms the system 
from one that can only be attacked numerically to one whose statistical mechanics are 
amenable to a complete analytical solution. This 'phantom wall' model allows for 
configurations in which the wall of a vesicle intersects itself; although such configur- 
ations are clearly ruled out on physical grounds the incorporation of this theoretical 
defect has the advantage of yielding a tractable model of two-dimensional vesicles 
subject to a pressure differential. In particular, the distribution of the shapes of these 
vesicles can be exactly determined. Models like this one (physically unrealistic in one 
or more ways, but exact solvable) have historically played an important role in guiding 
theoretical and conceptual progress. It is in this spirit that we introduce the present 
model. 

In section 2, the model is described, and the statistical analysis is presented. This 
section will be devoted to the formulation of the theory and to deriving specific results 
that have, in large part, already appeared in the literature (Rudnick and Gaspari 1991). 
New findings are presented in section 3. We arrive at a closed, exact expression for 
P ( h , ,  A*), the probability density for the two principal components of the radius of 
gyration (Sols 1971) of a polymer ring under pressure. A detailed numerical study of 
the probability density as a function of pressure will be presented. Concluding remarks 
appear at the end of section 3. An appendix discusses the iduence of self-avoidance 
on the configurational statistics of the two-dimensional vesicle when the internal 
pressure excess is almost sufficient to cause it to expand without limit, or 'pop'. We 
find that there is a regime in which self-avoidance plays at most a perturbative role. 

In a subsequent paper we will discuss the non-equilibrium properties of this model 
for two-dimensional vesicles. 

2. Two-dimensional pressurized vesicles 

2.1. ?he model 

The vesicle is pictured as an N-sided irregular polygon. The edges of this figure are 
permitted to cross, and the statistics goveming the distribution of the angle between 
adjacent sides are assumed to be those of an unrestricted random walk in two 
dimensions. When there is no pressure differential these random walks can, in the limit 
of large N, be modelled as random flights obeying Gaussian statistics. If A2 is the 
mean square length of a link, 17, then the probability distribution goveming 17, here a 
two-dimension vector, is 

and 

The probability distribution of any shape specified by a set of displacements qe is 
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then given by the product 

0=1 i=1 

An additional Botzmann factor, exp(ApA/kT), is required when the osmotic pressure 
differential is not zero. The quantity A is the area enclosed by the bounding wall. In 
calculating the averages, the constraining equations relating the q,s must be taken 
into account. In the present situation, the requirement that the walk is closed demands 
that the displacements sum to zero. This leads to two constraint equations: 

N c Il.i=o i = l , 2 .  (3) 
m = 1  

At this point one has a choice: the calculation can either be carried out in a constant 
pressure or a constant area ensemble. Since the wnstant pressure ensemble is the more 
relevant one experimentally, we carry through the analysis in that ensemble. Pertinent 
results for the constant area ensemble will be presented when they are useful. 

Bending forces can be accommodated through the inclusion of the factor 
exp(-&/kT) where the bending energy takes on the form 

K being the rigidity constant. It is a straightforward matter to show, at least in the 
inflated regime, that when the rigidity persistence length, AkT/K, is smaller than either 
the length of the bounding wall, NA, or the pressure persistence length, kT/A(Ap), 
the statistical properties are unaffected by bending forces, except for a renormalization 
of the effective length of a link. These observations are borne out by the numerical 
results of Leibler et aL 

We now argue that the Ap > 0 region is the only one pertinent to our model, thereby 
justifying the neglect of the bending term, at least for small rigidity. Using Green’s 
theorem, the probability is expressible in terms of the displacements. SpecScally, for 
flat surfaces the area, A, is equal to the line integral $ # (y dx - x dy) along the bounding 
curve. Note that the integral has a sign associated with the direction of integration, so 
closed paths that are flipped give contributions of opposite sign, which is equivalent 
to changing the sign of the pressure. In this model, then, the detlated regime is 
inaccessible; Ap > 0 and Ap < 0 both correspond to pressures that tend to inflate the 
vesicle. 

Evaluating the line integral along the polygon, one obtains the following expression 
for the area 

N 

.“=I 
A = $  1 q a x ? . + y + ( m - 4 .  (4) 

The function +(x) is the step function, +(x) = x/[xl. It is convenient to introduce a 
dimensionless quantity p = A’(Ap/kT) and to consider the coordinates to be a set 
expressed in units of A2. Then, using (4), the probability density is written 

The quantity 2 normalizes the probability. The essential observation is that the 
exponent has a bilinear form in the 7’s. Because of this, Gaussian statistics hold. The 
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expression in the exponent is easily diagonalized on Fourier transforming the coordin- 
ates. A suitable set is defined by 

cos(nk)+& sin(ak)) ( 6 a )  

q.,=C J$(A; cos(ak)+B;sin(ak)) 
k 

where k = 2?m/ N ( n  = 1 , 2 , .  . . , N ) .  Note that because of the constraint of net zero 
displacement the k = 0 term is not present in the sum. In terms of these variables, the 
probability function becomes 

The final step in the diagonalizing process is tantamount to finding the eigenvalues 
of the 4 x 4 matrix that couples the Fourier amplitudes. Once this has been accomplished 
ensemble averaging reduces to the evaluation of simple Gaussian integrals. 

2.2. The probability density of the principal components of the radius of gyration 

The gyration tensor, T, turns out to be a central quantity in the description of the size 
and shape of irregular bodies (Sol6 and Stockmayer 1971. See also Gaspari et all987). 
In terms of the displacement vectors, its components have the compact form (Forsman 
and Hughes 1963) 

T,  =A2 1 aOpqeiqpj (8) 
*.B 

with the elements of the symmetric matrix anp given by 

In two dimensions, T is a 2 x 2 matrix with two eigenvalues, A ,  and Az.  Two useful 
invariants that provide a rough measure of the extent of an object and its deviation 
from spherical symmetry are the square of the radius of gyration and the asphericity 
(Rudnick and Gaspan 1986), defined by 

R ~ =  A , + A ~  

These quantities must be averaged for random objects, such as vesicles. Complete 
statistical information is, of course, contained in the probability density of the principal 
components A l  and .A2 from which averages can be calculated, including (R’) and (A2). 
We turn to that probability function. 

In an earlier report (Rudnick and Gaspan 1991), an exact expression for P ( h l ,  AZ) 
was presented: 

, 
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where the integral is over all Fourier variables. Replacing the delta functions by their 
representation as Fourier integrals, yields an expression in terms of integrals and sums 
over simple functions. Unfortunately, no such treatment for the probability density 
is known for dimension other than two. Explicit evaluation of (11) is deferred to 
section 3. 

To evaluate the average of the square of the radius of gyration, (R*), a simpler, 
but somewhat less informative statistical distribution, P(R2) is all that is needed. It is 
defined by 

P(R2)= s(R2-T,-Tyy)P(AI,B I . . .  A;B; ...) dAldB1 ... dA;dB: .... (12) I 
In order to carry out the integration in (12) we express the components of the gyration 
tensor in terms of the Fourier amplitudes; noting that for large N 

1 cos ka 1 
amp cos k p  =- 

6 N k2 Nk2 
1 sin ka 

a,@ sin kp =- - 
P N k2 . 

Then, using equations (6) ,  (8) and (13) we obtain the following relationships 

A2 
T, = C - ( A r +  B:) 

k Nkz (14) 
and 

The integral becomes, on writing the delta function as a Fourier integral, 

1 ( k  ( i:’2) 

1 --I dwexp(iwR2) exp 1- If- 

(15) ) P 
k X (A:  + B: + AL2+ Bi2) -- (A& - ALBh) dA,. . . . 

Completing the Gaussian integrals over the Fourier amplitudes, we are left with 

where r = [(x2/4) - (iwA2/rrpJ]”2, pc, the critical pressure, is 4 ~ /  N and x =p/p.. The 
normalization factor 2 is given by 

sin m -- - 
T X  

(17) 
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This last quantity is just the inverse of the number of closed, pressurized walks of the 
sort considered here. The final equalities in (16) and (17) are obtained using the 
standard techniques of contour integration. 

Note that in the limit of zero pressure x + 0, 

P(R’,x=O)=, T’P.( exp ( i T R  o ) iwdw 
2A sin’ “G‘ 

This is the two-dimensional version of the result found by Fixman in his study of 
three-dimensional polymer chains. In contrast to the three-dimensional case, the 
integral in (18) can be performed explicitly by contour integration. The poles are on 
the positive imaginary axis, and the contour can be closed in the upper half-plane. On 
evaluating the residues one obtains 

2TPc = P(R’, x = 0) =- C (3n2-8~’(R/A)’n4) exp(-vpp,(R/A)’n2). (19) 

As a check, one can verify that I: R’P(R’ dR’) =(R’)  = N/12. In the small and large 
RZ regimes (18) can be evaluated by steepest descents, yielding the following asymp- 
totic forms: P ( R Z , x = O ) + e x p ( - 3 ( R Z ) / R 2 )  ((R2)>>Rz) and P(R’,x=O)+ 
exp[-(a2R2/3)/(R2)] ((R’)<< R’). These findings are fully consistent with the exact 
formula displayed in (19). 

When the pressure is non-zero the distribution as given by (16) continues to be 
amenable to contour integration methods. Astraightforward, but more involved analysis 
leads to the following formula for P(R2): 

2A‘ n = l  

A discussion of the scaling behaviour of P(R’) and a numerical evaluation of the sum 
has been reported previously (Rudnick and Gaspari 1991). The asymptotic behaviour 
is not substantially modified by pressure, except in the p+pc  limit, where the vesicle 
takes on a circular shape. The mean square radius of gyration is now calculated to be 

recovering the result reported earlier (Rudnick and Gaspari 1991). As pointed out in 
that reference, a closed form expression for (R’) can also be obtained in the constant 
area ensemble. The expression takes the scaling form NA’f[A/(NA’)], and it 
asymptotically approaches the limit A/T as A+w. It is instructive to note that all 
results in the constant pressure ensemble lead almost immediately to corresponding 
results in the constant area ensemble. One simply replaces the real value, p, by an 
imaginary one, ip, and utilizes the identity 

Applying this chain of reasoning to the distribution function P(R2), as defined above, 
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we obtain 
C O  

pA(R2; A,) =L 271 _ _  Pp(R2; -ip) dP (22) 

where the subscripts p and A identify the ensembles as constant pressure and constant 
area. 

- P 1 0  0 -  
2k 

0 1 -- P o  

0 - 2 1  0 

- P o 0 1  

2k 

2k 

2k 

2.3. The asphericity 

As mentioned earlier, an excellent single-parameter measure of the deviation form 
spherical symmetry of an irregular object, random or otherwise, is the asphericity 
parameter (Rudnick and Gaspari 1986; see also Theodoru and Suter 1985 and Aroaovitz 
and Nelson 1986) defined for an object embedded in d spatial dimensions as follows: 

In (23) the numerator and denominator are averaged separately. This eases the calcula- 
tional difficulties, although it is also possible to define, and obtain explicit results for, 
a version of the asphericity parameter in which the averaging is performed after the 
ratio has been taken. Indeed, Levinson has recently performed such a calculation for 
vesicles (1992). 

In two dimensions the calculation of the asphericity parameter, here A I ,  proceeds 
most simply if one uses the expression (Gaspari et a1 1987) 

Once again, replacing the elements of the matrix T by their Fourier decompositions, 
one finds that the averages are straightforward to evaluate: for example 

The quantities A+ and A- are the eigenvalues (A, = (1 *(p/Zk))) of the 4 x 4  matrix 

A2 = 
1 1+p2/4kZ' 

(3 k2-pz/4) 'f; (k2-p2/4l2 
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Performing the sums in (27) one finds that 
8 NZ 2N 

p4 6p2 p'tan(Npj4) 
8 N2 N2 
p' 6p" 2p2 sin2(Np/4) 

A2 = 

It can be readily verified from (28) that in the limit p+pC=4.ir/N the asphericity of 
the vesicles approaches zero. Furthermore in the limit of perfect Baccidity, p = 0, the 
asphericity is equal to f ,  the result fora two-dimensional, ring-shaped, non-self-avoiding 
random walk. 

As useful as averaged quantities, such as (R2) and (A,) are in parametrizing the 
size and shape of an irregular object, they provide no direct information concerning 
the distribution of shapes, which is, in general, much more difficult to get a handle 
on. However, the pressurized random walk model leads to exact formulae for the 
probability distribution. 

3. Full distribution of the principal radii of gyration 

The formula for P(A,, A,) displayed as equation (11) serves as the starting point for 
a closed-form expression for the joint probability distribution. As a first step we write 

S(Al+A2- T,, - T y y ) S ( ( h ~ - h ~ ) Z - ( T , -  TYy)'-4T',) 

exp(io,(h,+A~-T,-Tyy)) exp(iwz(Al-A2)2) 

x e x p ( 2 6  R,T,) do,  dw, dR, dR?. (29) 
Utilizing (8) to express the elements in T in terms of the q:s, expanding the qis as a 
Fourier series, as in (6a) and (6b) and utilizing (7) for the probability distribution of 
the Fourier components, one is left with a set of Gaussian integrals to perform over 
the coefficients. These integrations yield the following expression: 

1 
dw dR dR, d R z n  

k 
N2k2 

(30) 
where k = 2 m /  N, n is an integer and the product is over n > 0. The product can be 
evaluated with the aid of contour integration techniques. Once the product has 
been evaluated, a few other straightforward transformations lead to the following 
expression for the distribution 

X e b ( A , - A  ) ' Jo(RIhi -A> I ) IA i  - A d  

where 

a*=:--*[(>--) iwN pZN2 i o N  pZN2 +---I w2N2 R2NZ I/' . 
4w 32w2 32n2 16w4 16w4 
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If we set p = 0 this expression simplifies to 

P(AI, A,) =E [amdO lomdw ‘P(w+a) ’P(w -0) 
8% 

xe’W(”~-A~’Ja(O/Al - Az/) /Al  -A, / .  (32) 

In equations (31)  and (33) Ja(x )  is the zeroth order Bessel function, and 

P ( A , ,  A?) as given by (32) represents an exact formula for the full distribution function 
of the principal components of the radius of gyration of two-dimensional rings. Sole 
and Gobush (1974) have previously been able to express P ( A l , A Z )  exactly for two- 
dimensional polymer rings. Their expression requires summing over the zeros of zeroth 
order Bessel functions. Of course, the two expressions must yield identical values for 
P(A,  , A,). However, our equation (33) appears to be in a form more amenable to 
numerical calculation. No exact expression is known for the probability function in 
dimensions higher than two. 

While there seems to be no analytical way to further reduce the double integral in 
(33), it is possible to extract the leading behaviour of the probability distribution in 
the limit of large and small values of A ,  and A,. First, we note that the integrand has 
no singularities as a function of complex w in the lower half-plane. Singularities in 
the top half-plane are in the form of simple poles at w =*0+4rZn’/N where n is 
an integer. If (A,+A,)/N >> 1 then the integral over w is closed in the top half-plane 
and the integral is dominated by contributions from the n = 1 poles. The probability 
decays as exp(-4.rr’(A,+A2)/N). If (A1+A2)/N<< 1 then the w integration contour 
can be shifted downwards into the lower half-plane. It is straightforward to solve for 
the optimal shift. One finds a decay for small A I + &  dominated by the exponential 
factor exp( - N/4(A, + A2)). These asymptotic forms are identical to what was previously 
found for P(A,+ A,=R2) .  A numerical integration of (32) has been performed. The 
results are displayed, in the form of a three-dimensional plot, in figure 1. The plot 
clearly indicates that the walks are not spherical on the average. A circular vesicle 
represents a highly unlikely, in fact exceptional, case in the present model. We believe 
that this is so when self-avoidance plays a role, but numerical investigations would be 
required to establish it. 

In addition to the calcuIations described above, we have generated numerical 
distributions of non-self-avoiding vesicle walls in a variety of pressure regimes. Such 
distributions are, in fact relatively elementary to generate because of the simple statistics 
that govem these objects. While the requirement that a random walk closes places a 
global restriction on it in real space, this restriction is easily implemented in reciprocal 
space, as described below equations (6a )  and (66). One generates a set of Aks, Bks, 
ALs, and BLs according to the Gaussian distribution in (7), forms T and diagonalizes 
the matrix. We have constructed distributions of the eigenvalues A ,  and Az for pressures 
equal to 0, 0 . 5 ~ ~  and 0 . 9 9 9 ~ ~ .  The distributions are shown in figures 2(a, b, c). It is 
noteworthy that the distribution is only weakly affected by the pressure whenp =OSp.. 
On the other hand, as the pressure approaches the value at which the vesicle becomes 
unstable, the effect on the distribution is dramatic, as one might well expect. First, the 
distribution is quite spread-out; its second moment is comparable to its first, so a wide 
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Figure 1. Three-dimensional plot of the joint eigenvalue distribution, P(A, ,A2) ,  of the 
moment of inertia tensor of a vesicle with phantom walls, calculated with the use of 
equations (32) and (33). The vesicle is in a zero pressure environment. The normalization 
of the eigenvalues is not indicated. The plot was oblained with the use of MathematicaQ. 

range of values for the eigenvalues is to be expected. This is consistent with results 
reported earlier for the distribution of the mean radius of gyration (Rudnick and 
Gaspari 1991). As a second feature, the distribution is peaked in the vicinity of the 
line A ,  = A2. The highly inflated vesicles are nearly spherical in shape, again in line 
with reasonable expectations. 

4. Conclusions 

The model discussed in this paper is a self-contained, analytically tractable representa- 
tion of two-dimensional vesicles in an environment that includes an osmotic pressure 
differential. While this representation is several steps removed from realistic models 
of physical and biological vesicles its solvability enables one to test hypotheses, and 
to develop additional insight into the behaviour of vesicles in interesting contexts. 
Furthermore, there may well exist physical realizations of the kind of self-intersecting 
ring-like system considered here. A polymer ring on a flat surface can, in principle, 
flip over itself and thus adopt a figure-eight, or similar 'self-intersecting' configuration. 
In addition, it is shown in the appendix that there is a regime sufficiently close to the 
critical pressure in which the requirement of self-avoidance is irrelevant to the configur- 
ational statistics of the vesicle wall. 

The primary purpose of this paper is to elucidate the analytical features of the 
model, and to illustrate how useful results are extracted. As we hope has been made 
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Figure 2. ( a )  Contour plot of the joint eigenvalue distri- 
bution, P ( h , ,  A2), of the moment of inertia tensor of a 
vesicle in a zero pressure environment, obtained via 
simulations with the use of the method described in 
section 2. The normalization of the eigenvalues is 
arbitrary, but is consistent with the normalization in 
figuresZ(b)andZ(c). (b)Contourplotofthheeigenvalues 
distribution of a vesicle in which the pressure is 0.5 the 
critical pressure. ( e )  Contour plot of the eigenvalues for 
a vesicle in which the pressure is 0.999 the critical 
pressure. 

clear, this process is by no means complicated. The value of this model is thus clear. 
We believe that it represents an excellent ‘zeroth order’ theory, which will, we expect, 
be amenable to some kind of renormalization when the constraint of self-avoidance 
is introduced. We note here that the influence of bond rigidity can, in principle, be 
added to this model. Preliminary investigations indicate that the two limiting regimes, 
the nearly-flaccid regime, in which the rigidity modulus is very small, and the almost- 
spherical regime, in which the rigidity persistence length is greater than the circumfer- 
ence of the vesicle wall, can be straightforwardly treated. An issue not discussed in 
this paper, but addressed in an earlier publication (Rudnick and Gaspari 1991), is that 
of scaling. It is easy to verify that this model exhibits the kind of scaling studied by 
Maggs et al (1991). The exponents are mean-field-like, as one might well expect. 
Finally, we note here that the model continues to be tractable when suitable dynamics 
are included. An analytical and numerical investigation of the dynamics of this system 
is the subject of the following paper (Gaspari et al 1993). This remarkable property 
of the ‘phantom wall’ vesicle will, one hopes, lead to even further insights into the 
physical properties of this fascinating system. 
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Appendix. Effect of self-avoidance on the statistics of the highly inflated vesicle 

Heuristically, one expects that the highly inflated walk will not especially feel the 
effects of self-avoidance. In a regime in which the vesicle wall is stretched to the 
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breaking point the energetic cost of the wall's bending back on itself is so great that 
self-intersection will not play a significant role in conformational statistics. In this 
appendix, we provide a mathematical basis for that intuition. A calculation in the 
context of perturbation theory indicates that self-avoidance has a quantitative, not a 
qualitative effect on vesicle wall statistics near the 'popping' transition, and that, if the 
pressure is sufficiently close to the critical pressure, there is no need to renormalize 
the theory beyond simple multiplicative redefinitions. The results derived here also 
give an indication of how closely one must adjust the pressure to its critical value in 
order to avoid the necessity of taking self-avoidance into account. 

We start by considering the lowest order renormalization of the fugacity, z, in the 
grand-canonical ensemble. This renormalization is effected by adding to z the 
expression represented by the diagram displayed in figure A l .  The diagram is just the 
graphical representation of the generating function for the closed, unrestricted walk. 
With the use of equation (17) we obtain the following result for the renormalized 
fugacity, zR : 

where U is a coupling constant, which is taken to be small. Now we assume that 
p c =  1 /  No,  so the vesicle with No wall sections will pop when subjected to an internal 
pressure excess greater than p c .  Let p = pc( 1 -a), where 

1/( No In( No)) .  (A.2) 

Then, when N = No 

1 v =_ 
sin( No.rrp) NOS 

and, when N = N o - m ,  with m a l ,  

1 
sin((No-m)rp) m 

_-, .irP 

(A.3) 

(A.4) 

Note that the right-hand side of (A.3) will be much greater than the right-hand side 
of (A.4). Now, in order to obtain the number of closed walks with No segments we 

Figure Al .  Closed loop, representing the lowest-order 
contribution to the renormalized fugacity, za. This diagram 
also represents the generating function for the number of 
unrestricted, closed walks. 
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mustfindthecoefficientofzNoin f(zR)=f(z+uf(z))'=f(z)+Ufl(z)f(z).Using(A.l), 
(A.3) and (A.4) we find that the terms of order zNo sum up to 

If the inequality in (A.2) is satisfied, the last term in the brackets can be neglected, 
and the expression for the number of walks is dominated by contributions behaving 
qualitatively like the expression for the number of walks in the absence of self- 
avoidance, i.e. the right-hand side of (A.3). When No is large, the factor in (AS) 
depending on the ratio U/& can be absorbed into a multiplicative renormalization 
of 2,. 

It remains to be established that the criterion embodied in the inequality (A.2) for 
the irrelevance of self-avoidance in the vicinity of the 'popping' transition has a validity 
transcending the perturbation-theoretic derivation of this appendix. 
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